
Handling Design-Level Requirements across

Distributed Teams:
Developing a New Feature for 12 Danish Mobile Banking Apps

Lars Bruun, Mikkel Bovbjerg Hansen

Bankdata

Fredericia, Denmark

lars.bruun@bankdata.dk, mbo@bankdata.dk

Jørgen Bøndergaard Iversen, Jens Bæk Jørgensen, Bjarne Knudsen

Mjølner Informatics A/S

Aarhus, Denmark

jbi@mjolner.dk, jbj@mjolner.dk, bkn@mjolner.dk

Abstract—Bankdata and Mjølner have cooperated in the

development of a new feature for 12 Danish mobile banking apps.

Bankdata is the main system provider and Mjølner is

subcontractor. Different teams from Bankdata have collected

requirements, developed the necessary backend and middleware

software, and designed the user interface. One team from Mjølner

has implemented the app feature. The cooperation between the

teams was centered around design-level requirements. Our

contribution is to describe and discuss a number of lessons learned

regarding requirements representations, requirements tools, and

cooperation process; we have faced challenges, which were

amplified by our distributed teams set-up. We also briefly describe

a number of initiatives we have launched recently to alleviate the

problems and improve the handling of design-level requirements

in our future cooperation.

Index Terms—Pragmatic requirements engineering, process

efficiency, “good-enough” requirements, agile and lean

approaches.

I. INTRODUCTION

Bankdata provides complete financial IT solutions for the

banking sector. Bankdata is owned by a number of Danish banks

and has approximately 650 employees. Services include tools for

account managers, automated banking and home banking

solutions for desktop and mobile devices. Mjølner develops

custom-made software solutions for Danish and international

customers. Mjølner has expertise in development of a broad

range of system types, among them mobile solutions. Mjølner

has around 80 employees.

Bankdata uses Mjølner as a subcontractor for app

development. Since early 2013, our companies have cooperated

on making a new feature for mobile banking apps for 12 banks.

The feature is called Swipp. It allows money transfer between

two persons, using a smartphone and only based on knowledge

of the recipient’s phone number. The first version was released

to the Danish market in the summer of 2013. Since then, two

subsequent versions have been developed and released. In

March 2014, Swipp has around 350,000 users.

In this paper, we describe our cooperation in the Swipp

project, which has been organized in distributed teams. All

authors have participated in the project, and together we

represent the roles of user experience designers, business

analysts, app developers, and project managers. From Bankdata,

approximately 15 people spanning three teams have been

involved. The project also included backend developers and

software testers, in addition to graphical designers from another

subcontractor. Mjølner had one single team consisting of four to

six app developers and a project manager. Approximately

12,000 project hours have been used producing around 25

different new app screens.

Lauesen [4] classifies requirements in goal-level, domain-

level, product-level, and design-level requirements. This project

has primarily been concerned with product- and design-level

requirements, and the main focus in this paper is on design-level

requirements, i.e., the detailed specification of the user interface

(unless anything else is specified, the term requirements refer to

design-level requirements).

Most of our discussions in this paper involve the handling of

design-level requirements internally between the distributed

teams that together constitute the development organization (we

refer to this as internal communication). To provide some

background information, we also give an introduction to the

general requirements process between the development

organization and other stakeholders (external communication).

External communication is extensively described in the

requirements engineering literature. However, we are not aware

of many authors who have discussed the internal communication

issue. Efficient internal communication is crucial on the long and

complex path from initial ideas about requirements to realization

978-1-4799-3033-3/14 c© 2014 IEEE RE 2014, Karlskrona, Sweden

Accepted for publication by IEEE. c© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

335

in the form of adequate solutions that are well aligned with the

needs of the users.

The structure of this paper is: In Section II, we present the

mobile banking apps and their context in general; this includes a

description of the Swipp feature in more detail. Section III

describes the general requirements process and the requirements

artifacts and tools we have been using. In this way, Section II

and Section III constitute background material aimed at giving

the reader an overall understanding of the system we are

considering and the process our work is part of. In the central

Section IV, we list and discuss a number of lessons learned,

including the improvement initiatives we have launched. The

conclusions are drawn in Section V, which also includes a brief

discussion of related work.

Even though our process, as we will discuss in more detail,

had room for improvement, the Swipp feature was delivered on

time, with few errors, and has been very well received and rated

by the users.

II. THE APPS AND THEIR CONTEXT

The mobile banking apps are available on the iOS and

Android platforms. They have been developed in parallel and

have a history of four years. The apps are for 12 different banks;

one of these is among the largest banks in Denmark.

There is only one codebase per mobile platform, iOS and

Android, because it has been decided that all apps should have

the same functionality. The majority of the apps vary in

appearance, e.g., details like theme color, bank logo and other

bank identity properties, which are easily parameterized. The

app for the largest of the banks has been further individualized

with a different main menu user interface, different graphical

design, and more app preference pages with options for user

interface customization.

A. Functionality

Frequently used features in the apps are viewing account

balances, account entries, transferring money, and paying bills.

Moreover, the apps have utility functions like currency lists, a

currency calculator, and a function to block your credit card. In

total, each app has approximately 100 different screens (about

25 of these are related to the Swipp feature).

A large and complex set of functionalities in the apps is the

investment features. You can use this to track the stock exchange

market, overview your securities and sell and buy securities.

Exchange rates are visualized with interactive graphs.

The latest feature, Swipp, is the largest in the apps in terms

of lines of source code and the number of app screens. The

feature enables users to transfer money just by using the

recipient’s phone number. Account numbers are not needed,

which is convenient as one person typically does not know

another person’s account number, and they tend to be hard to

remember. When a payment has been registered, recipients are

instantly notified about the transaction. Fig. 1. shows a Swipp

payment screen from one of the apps.

In order to use the Swipp service, you have to sign up first.

To sign up, the user completes a wizard and chooses which

phone number to use, selects an account to assign to the

agreement, and enters some additional details. Multiple

agreements can be created and managed.

To make a Swipp payment, you enter a phone number, select

a previous recipient, or select a recipient from your phone

contacts, which are listed in the apps. Then you enter the amount

to transfer.

Fig. 1. Swipp payment screen from one of the apps (collapsed state).

B. Integration of the Apps with the Backend Bank Systems

All the apps integrate with the bank systems through a shared

middleware interface. The middleware component is

implemented in Java and has a REST interface.

The middleware interface is a borderline for division of work

between Bankdata and Mjølner. Bankdata is responsible for

development of the middleware including adding new service

336

methods and modifying existing ones to be able to handle the

data requirements of the app. A team of developers at Bankdata

are assigned to work with this component. Mjølner handles the

development of all apps.

The middleware is a thin layer, which is acting as a facade to

the backend component, which holds all the core business logic

and data. The backend is also servicing other components like

the home banking solutions and internal bank applications.

The backend is a COBOL component. The people working

with this component are in a different team than the ones

working with the middleware component. In many cases, the

backend component already supported the functionality required

by the mobile apps. Sometimes, however, it was necessary to

change the backend component, so it could be used by the

middleware to deliver an efficient service to the mobile apps.

The overall composition of the system is illustrated in Fig. 2.

Fig. 2. Component diagram. The figure also indicates the different

geographical locations with Mjølner in Aarhus and Bankdata in two
cities, Silkeborg and Fredericia.

III. GENERAL REQUIREMENTS PROCESS, ARTIFACTS, AND

TOOLS

A wide range of stakeholders were involved in order to

specify requirements. Goal- and domain-level requirements

were established by a joint venture consisting of a vast majority

of the Danish banks. An example of a goal-level requirement

could be that the banks should gain market shares on the very

competitive market for making mobile payments; an example of

a domain-level requirement could be that it should be possible

to transfer money to another person just using a mobile phone.

For most parts those requirements could not subsequently be

influenced by the individual banks and their IT service providers

such as Bankdata. The majority of the requirements were passed

on to Bankdata at the beginning of the project and remained

relatively stable throughout the course of the project. All

requirements from the joint venture were documented in textual

form supplemented by high-level process diagrams.

At Bankdata, the project was divided into three separate

project teams with project members from different departments

situated at two different geographical locations. Requirements

were analyzed and specified primarily in cooperation between

Bankdata, the subcontractors, and various representatives from

Bankdata’s customer banks. Product-level requirements were

typically identified at workshops with the Bankdata project team

members and the banks.

After that, the requirements were incrementally detailed in

cooperation between business representatives and project team

members. In this way, the design-level requirements were

specified. Mjølner was normally not involved at this point in the

process. The requirements delivered to Mjølner were detailed

and documented using:

 Use cases (prose and diagrams)

 Interaction design (wireframes)

 Graphical designs (image files)

 Middleware interface descriptions (prose)

In order to avoid multiple use case descriptions because of

what was believed to be minor user experience deviations

between different devices, it was attempted to keep use case

descriptions generic and device independent, i.e., the same use

case descriptions were used for development of both the iOS and

the Android apps.

The project use case descriptions were intended to have a

detail level similar to that of Cockburn’s [1] fish-level

description. The use cases contained, e.g., verbal and graphical

descriptions of the actors involved, the main flow, and all

alternative and exception flows. Use case descriptions were also

supplemented with lists of functional requirements (business

rules), as illustrated in Fig. 3.

ID Description

FR-

03

The following input fields

are mandatory:

*Amount

*Mobile phone number

ID Description

FR-

27

Recipient (mobile phone

number) must be active in

database

Fig. 3. Extract from list of functional requirements from the ‘Execute Swipp

payment’ use case.

An example of a flow description in the form of a UML

activity diagram is shown in Fig. 4.

337

Fig. 4. Simplified version of activity diagram for the ‘Execute Swipp

payment’ use case.

Interaction design [8] was documented with wireframes,

which were combined into a navigation diagram including main

and alternative navigation flows. An extract of the navigation

diagram is shown in Fig. 5.

Wireframes and navigation diagrams were only used to

document navigation flows, content, and the structural aspects

of the interaction design. The look and feel was specified in the

graphical design files; an example is shown in Fig. 6.

The exchange of the requirement artifacts and the parties

involved are illustrated in Fig. 7. As can be seen from the figure,

the following teams were involved in the requirements handling:

 Business analysis and user experience design team at

Bankdata

 Middleware development team at Bankdata

 Backend development team at Bankdata

 App development team at Mjølner

 Graphical design team at another subcontractor

This distributed teams set-up was a major contributor to a

number of the challenges we experienced regarding handling the

design-level requirements, as we will discuss in more detail in

the following section.

Fig. 7 emphasizes the difference between external

communication and internal communication, cf. the discussion

in the introduction. The external communication is represented

by the topmost arrow. The internal communication is

represented by all other arrows.

Fig. 5. Section of wireframe navigation diagram.

IV. LESSONS LEARNED

After having introduced the apps and the general

requirements process, artifacts, and tools, we now list and

discuss a number of lessons learned from the development of the

Swipp feature.

A. Too Many Requirements Representations

The multitude of document types used for specifying design-

level requirements and the distribution of those documents

across several different repositories proved to be a major

challenge throughout the project.

338

Fig. 6. Graphical design for a Swipp payment screen from one of the apps –

the design varies from the design depicted in Fig. 1.

In many cases, we did not manage to avoid redundancy

between the different documents. The position of an input field,

e.g., would be described in four different documents: 1) a

wireframe - and so would any associated label and placeholder

text. In order to specify related business rules and any conditions

regarding data formats and validation, the input field was

referenced in 2) the use case descriptions. The visual look of the

input field was illustrated in 3) the graphical design files - once

again including possible labels and placeholder texts. Finally all

requirements, except for those related to graphical design, would

be integrated in 4) test case descriptions. As a result of this,

several different documents in different repositories had to be

updated because of something as trivial as the change of a

placeholder text in an input field.

These conditions were further complicated by the fact that

certain representations were generated from specialist tools to

more viewer-friendly formats.

Fig. 7. Exchange of requirements artifacts and the parties involved.

Wireframes and navigation diagrams were distributed as

html-prototypes, Word document specifications, or image files

generated from Axure RP (a tool supporting generation of html

prototypes, Word specifications, and image file wireframes).

Graphical design files were distributed as image files generated

from Photoshop.

This redundancy introduced a number of sources of errors

and constituted a built-in inertia that hampered the process of

updating and synchronizing requirements representations.

Some inconsistencies between the different representations

were deliberately accepted. In order to minimize resources spent

on graphical design, e.g., it was decided that graphical design

files were only updated, if changes in requirements strictly

involved the look and feel of a user interface element, i.e., shape,

size, and tint, but not changes of phrasing, values, etc. Allowing

such inconsistencies in the available documentation may seem

rational and reasonable but still, however, proved to be a

problem. Even when changes were made in the wireframe

documents only, the set-up was not favorable. As soon as

graphical design files were updated to newer versions than their

wireframe counterparts, misunderstandings easily emerged.

When a design file was updated (e.g., because of a new icon

design) it simply proved counterintuitive to disregard the now

deprecated text labels in the document, because it had a newer

version date than the corresponding wireframes.

We have not been able to omit any of the different

documentation types entirely. In order to eliminate the alignment

339

problems, we are working on reducing information redundancy.

At a closer inspection, we have noticed that our use case

descriptions may be too detailed. In certain aspects, the detail

level is closer to clam-level than the intended fish-level, cf.

Cockburn [1]. In future projects, that level of detailing will be

avoided in the use case descriptions and delegated to the

documentation of the interaction design in the form of

wireframes.

In order to reduce the redundancy between wireframes and

graphical design we have chosen that the final graphical design

is primarily documented as component sheets and style sheets

(depicting no real data). This way redundancy is removed and

the different purposes of wireframes and graphical design are

further emphasized.

B. Cooperation Process and Tool Support Were Insufficient

As described in Section III, the requirements package

delivered to Mjølner contained the following artifacts: use cases,

wireframes, graphical design, and a middleware interface

description. The artifacts in question were created by different

project members at Bankdata, which in itself poses a number of

risks related to alignment of documentation.

Alignment problems, however, typically occurred after

Mjølner made their initial reviews. During Mjølner’s review of

wireframes and use cases, mistakes and improvements were

identified. Hereafter the wireframes and use cases often would

get out of alignment due to insufficient communication between

the different project members responsible for the relevant

artifacts at Bankdata. Sometimes, this led to confusion among

the Mjølner development team and the Bankdata team.

The regular communication set-up in the individual

organizations could not easily be integrated with the distributed

teams. Therefore, other communication tools had to be used, and

since insufficient attention had been given to the communication

set-up when the project was established, the needs were taken

care of as they emerged. Because of that, we ended up using four

different communication channels: Email, an FTP-server, a

Sharepoint site, and a task management system. Mail

communication in itself of course is not befitting for findability

and a set-up with so many communication channels creates

barriers that does not favor alignment of information.

When the implementation of the apps began and the testing

of the first versions was initiated, the project needed to handle a

number of requirement clarifications on a daily basis. Because

the project teams were situated at different locations, the

communication was primarily handled via a shared task-

management system and by email and phone.

The various project teams (including the subcontractors) had

several points of contact and there were no sufficiently well

defined procedures for communication and documentation

maintenance. When changes or further detailing of requirements

were made, the original specifications were often not updated.

Either because it seemed redundant or because it was unclear

who was responsible for updating the documentation. Especially

software testers experienced problems with keeping the test

cases up to date because in many cases they were not involved

in the decision making relevant for design-level requirements

and relied entirely on specifications and briefings from the other

project members.

As part of Bankdata’s test effort, they reported several bugs

in a task management system shared with Mjølner (Jira). Some

of the bugs lead to further clarification of the requirements

related to the buggy feature, and this was communicated in

comments to bug reports. The problems experienced with email

clarification were also present when the clarification was

initiated by a bug report and the discussion took place in bug

report comments.

All in all, the documentation of the requirements was spread

across a number of documents and repositories and distributed

via several communication channels. This resulted in a number

of problems: Finding the latest information about a requirement

could involve traversing documents, images, emails, bug

reports, and talking to colleagues. Contradicting descriptions of

the same requirement could exist in the documentation, because

different people were responsible for updating the

documentation and because documentation was distributed

across different repositories.

Much attention has been given to the future communication

process that should explicitly support distributed teams. It has

been decided to use a task management system as a hub for all

project communication. VersionOne has been chosen since it is

already implemented at Bankdata as the corporate project

management system. Although documentation still resides in

multiple repositories, the task management system will be the

focal point for all project members. Documentation is referenced

from the relevant feature groups, use cases, and tasks in the task

management system, and relevant project members are

automatically notified when task conversations are updated.

Project members have also been asked to document decisions

made at meetings or by phone in the task management

conversations. Communication by email will be kept at a

minimum, and it has been decided to use a shared mailbox to

communicate with external stakeholders that do not have access

to the task management system.

In addition to improved tool support, Bankdata and Mjølner

have planned to work at the same location once a week. This is

expected to enhance the communication process.

C. Software Developers Were Not Consulted Sufficiently Early

During the project, there were several incidents where

implementing a component became more time consuming than

expected. Often this was because the user experience designers

were not sufficiently aware of the specific technical challenges

in implementing particular components. We give two examples

to illustrate this.

The first example involves the development of a custom

component. To match the design of the app, it was decided to

use a custom-made keypad instead of the operating system’s

built-in keypad. For outsiders it may seem like a trivial task to

build a component with buttons for the digits zero to nine and a

few additional characters. But for the app developers, the task

was far more complex. Intricate behaviors like opening and

340

closing the keypad, adjusting to different screen sizes, scrolling

the input field into focus, etc., often go unnoticed. All these

behaviors are handled nicely by the built-in keypad, but had to

be developed anew for the custom keypad. The result was that it

was far more time consuming to develop this part of the app than

first estimated.

Another example relates to a graphical redesign of the Swipp

payment screen. At a first glance, the redesign introduced what

seemed to be minor visual differences between the individual

apps. But when it came to implementation, those differences

added a significant overhead to the development, because many

subparts of the graphical layout for the different apps had

different screen positions. The developers ended up maintaining

two different versions of the screen, instead of just changing

style and image files. The result was more time spent on the

redesign than anticipated.

In both examples, there had been a better basis for making a

trade-off between app quality and effort required for

implementation, if the app developers had been involved earlier,

i.e., if there had been a better communication between the

distributed teams. When the developers made their observations,

Mjølner assumed that it was too close to the deadline to suggest

changes to Bankdata, because they would have to involve the

banks for approval, which would require too long calendar time.

The cost of involving more people in the earlier stages of the

project is likely to be less than the extra time spent in the

implementation stage. Furthermore, we believe that involving

the developers at an early stage could have led to more

innovative solutions to certain challenges, because of the extra

knowledge brought to the discussion via the developer

perspective.

We have changed our cooperation process, and in future

development projects the app developers will be involved as

soon as business analysts and user experience designers are

ready to present the first sketches of desired user experiences.

The weekly workdays on the same location will hopefully ensure

regular technical assessment of the desired user experience

designs by app developers.

Middleware interface specifications is another subject,

where app developers have been involved too late. Sometimes

the middleware interface description was made after the

development of the actual middleware interface. The

middleware interface description was not always carefully

reviewed before handed over to Mjølner, in order to verify that

the middleware interface description were consistent with the

wireframes and use cases.

One example of this was a set of functions involving security

signing of new Swipp agreements created on the phone. In the

first version of the interface, it was possible to sign an

agreement, but the middleware did not support the flow through

the app that the wireframes described. After some discussions

between the middleware developers and app developers, a

suitable compromise was reached.

One of the reasons for the lack of reviews was a result of the

fact that the middleware development was not a fully integrated

part of the Swipp project. Because of other assignments, the

middleware developers were not allocated to the project full

time, which meant that the middleware development tasks were

not always well coordinated with the rest of the project activities.

Because of this, the middleware development has now been

fully integrated in Bankdata’s mobile banking project

organization.

D. Platform-Dependent Design-Level Requirements Were Not

Considered Sufficiently Early

The iOS platform has always been the starting point when

interaction design for the apps has been made. All the mock-ups,

concept design and pixel perfect screens have been carefully

tailored with great respect to iOS guidelines and a lot of

resources have been used to make high quality designs for Apple

devices.

When the iOS design was completed, the Android

developers gave inputs to changes to make the Android apps less

iOS-like and more in line with Android design principles. One

example of this is a simple user interface control like an iOS

on/off switch, which on Android should look and function more

like a standard toggle button. Another example is the use of back

buttons and top menu buttons in iOS, which on Android should

be removed because of the hardware buttons.

The practice of designing for iOS first and using the same

design for Android is very common, and is reflected in the

design of a lot of the apps in the market. There are a number of

reasons to do this.

Statistics for various apps, that we have been involved with,

have shown much higher iOS download and traffic numbers for

iOS users compared to Android users. Therefore iOS devices are

often targeted first and the interaction design is then

subsequently reused for Android devices in order to save

resources or because the iOS design becomes an implicit point

of reference for the interaction designers.

Another reason why iOS design often precedes Android

design is that iOS apps have more strict submission criteria.

Previously there were also considerably more design guidelines

for iOS than Android, but even though this has changed, still

almost anything will be allowed on the Android app market, so

there is less need for tailored design on that platform.

The need for design customizations for Android apps has

prior to this project been fairly manageable and adjustments

were handled on the fly. In the development of the Swipp

feature, however, we encountered more fundamental disparities

between the interaction design suited for Android and iOS.

Some of the challenges revolved around the fact that the Android

ecosystem is much more fragmented than iOS in terms of

display dimensions. In certain contexts, this becomes

particularly important to take into account when designing.

For the Swipp feature we used new layout concepts different

from the existing concepts used in the apps. An example of this

is the Swipp sign up wizard, where the content of each page had

been super optimized to the very limited range (currently two)

of iOS display sizes. In order to draw attention to content that

was hidden behind the keypad on small iOS displays, a button to

hide the keyboard and make hidden content visible was

introduced. This design, unfortunately, is based on a fixed layout

341

concept, which from an implementation perspective is not

feasible when it has to be applied to a lot of different screen sizes.

The latter is characteristic for the excessive amount of different

Android devices.

For each of those fixed screen designs it was necessary for

the Android app developers and the user experience designers to

investigate and find alternative solutions to make the design

work on Android. The general solution has been to handle three

different groups of display sizes differently. A drawback to this

solution is a more complex code base, which will require more

maintenance and testing. The advantage is that Android devices

with the most general screen sizes have the same layout as iOS

devices.

To avoid legacy issues, e.g., with iOS designs, which do not

fit well on Android devices, a couple of new approaches have

been planned. In the first place, app developers for each platform

will be involved in the early stages of the design process and

attend meetings, where early sketch designs are presented. A

more timely developer assessment of preliminary designs can

ensure that layout concepts that are inappropriate from an

implementation point of view are rejected. Secondly, the

interaction design will be tested on multiple display sizes before

it is finalized. Furthermore, the user experience designers are

investigating how best practices from responsive web design can

be transferred to app design in order to produce more fluid

layouts that will accommodate a broader range of display sizes

and aspect ratios.

These changes in the process will ensure that design-level

requirements for all relevant platforms are not overlooked and

also provide a better foundation for estimates.

V. CONCLUSIONS AND RELATED WORK

To sum up, the lessons we have discussed above are that 1)

there were too many requirements representations, 2) that the

cooperation process and tool support were insufficient, 3) that

software developers were not consulted sufficiently early, and 4)

that the platform-dependent design-level requirements were not

considered sufficiently early.

We believe that the distribution of work across different

teams has been a primary reason for the problems we have

experienced. If, e.g., it had been possible to carry out the project

with one single team with 6-8 persons, the problems would most

likely have been less severe. In a dogmatic agile project, there

are no teams distributed across different geographical locations

– not even different rooms. This of course means that the needs

for elaborate documentation - which may cause redundancy –

and formalized communication procedures – with another

balance between written and oral communication - are quite

different from those of geographically dispersed development

organizations such as ours. We have realized that we until

recently have underestimated some of the challenges caused by

the size of the project and by the distributed teams set-up.

Our project was planned to apply a number of key elements

from agile development, e.g., iterations of a few weeks’ length

and frequent demonstrations for bank representatives. This

would allow us to gain feedback that could be used to make

prioritizations for the next iterations of the project. In this way,

we have in fact dealt with a number of requirements issues that

have emerged throughout the project. However, there have been

stages in the project, where this way of working was not fully

enforced, and where feedback or other cooperative measures

therefore have come too late, as we have discussed.

In addition, we have not had one explicitly appointed product

owner as a central point of contact regarding requirements

issues, which might have contributed to an alleviation of some

of our problems. We have decided to introduce a product owner

now, but we realize that such centralization may cause new

problems, like introducing communication bottlenecks. Whether

the advantages balance well with the drawbacks are to be seen.

This remark generalizes to all the improvement initiatives, we

have launched; we do not have much evidence about their effect

at the time of writing this paper.

As mentioned in the introduction, we are not aware of many

authors, who have described the challenges involved in handling

internal communication across distributed teams in the

requirements engineering literature. We do know of a couple of

papers though. Gross and Doerr [3] discuss the needs for

different representations of requirements for different roles.

Marczak and Damian [6] set a theme which is similar to [3], and

have in previous work explicitly addressed how distributed

development influences cooperation patterns [2].

Regarding the lesson about not getting the software

developers involved sufficiently early, it is widely recognized

that requirements and software architecture are interdependent

subjects that should not be treated separately or in a given,

sequential order [7]. This relationship is, e.g., discussed by Loft

et al [5] in the context of a project involving Mjølner, where the

importance of very close cooperation between requirements

engineers and software architects from the beginning of a project

is described. In comparison with the Swipp project of this paper,

this may be easier to facilitate when requirements engineers and

software architects work within the same company and location,

such that interactions do not have to cross organizational

boundaries and physical separation.

A few remarks about the RE14 theme of innovation. We

believe that the Swipp feature – although a rather

straightforward concept – is an innovative approach to making

payments. Swipp in itself is not the result of an innovative

requirements process, but we think that we must focus on being

increasingly innovative and creative in the ongoing requirements

and development process in order to cope with the tough

competition in mobile banking and mobile payments.

We hope that the improvement initiatives we have launched

will be beneficial – and that they are more generally applicable

and can be used in other, similar projects. In particular, we

believe that projects with distributed teams must give much

attention to ensuring good and efficient communication

processes and strive to reduce redundancy in requirements

representations.

342

ACKNOWLEDGMENT

We thank all our colleagues at Bankdata and Mjølner, who

have contributed to the project or who have read and commented

and suggested improvements to this paper.

REFERENCES

[1] A. Cockburn, Writing Effective Use Cases, Addison Wesley,

2000

[2] D. Damian, S. Marczak, I. Kwan, “Collaboration patterns and the

impact of distance on awareness in requirements-centred social

networks”, RE07, New Delhi, India, IEEE, 2007

[3] A. Gross, J. Doerr, “What you need is what you get: the vision

of view-based requirements specification”, RE12, Chicago,

Illinois, IEEE, 2012

[4] S. Lauesen, Software Requirements - Styles and Techniques,

Addison Wesley, 2004.

[5] M. S. Loft, S. S Nielsen, K. Nørskov, J. B. Jørgensen ”Interplay

between requirements, software architecture and hardware

constraints in the development of a home control user interface”,

Twin Peaks workshop at RE12, Chicago, Illinois, IEEE, 2012

[6] S. Marczak, D. Damian “How interaction between roles shapes

the communication structure in requirements-driven

collaboration”, RE11, Trento, Italy, IEEE, 2011

[7] B. Nuseibeh, “Weaving together requirements and architecture”,

Computer, pp. 117-117, Mar. 2001

[8] H. Sharp, Y. Rogers, J. Preece, Interaction Design, John Wiley &

Sons, 2007

343

